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SUMMARY

A flutter analysis procedure for nonlinear systems is proposed as an
alternative to timewise integration methods. It is based on an energy method due

to J, Roorda and S. Nemat-Nasser; and shows promise of being a practical pro-
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cedure provided the number of parameters can be minimised by the representation
of the flutter system by an equivalent (condensed) two degree of freedom system

in the neighbourhood of the critical condition. The relationship to the simpler

e s e e,

method put forward by R.F., Taylor et alia is considered.
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1 INTRODUCTION

The theoretical prediction of flutter characteristics can normally be treated
adequately as a linear, small perturbation, problem, However there may be circumstances
where a nonlinear analysis is essential., This may sometimes be the case, for example,
in transonic flow conditions. One obvious method that could be used would be to determine
by numerical, timewise, integration the motion consequent upon a number of initial dis-
turbances. So by interpolation one should be able to determine possible states of
periodic motion., Alternatively one can attempt to determine directly such limit cycles.
This present paper is, therefore, an initial consideration of how this might be done.

An approximate method, with two possible simplifications, is suggested.

2 THE BASIC RELATIONSHIPS

Suppose we have an aeroelastic system where Lagrange equation of motion can be
approximated sufficiently well, for the purpose of finding periodic solutions, by the

nonlinear matrix differential equation:-

Aviq" + (Bv + D%) q' + (C + %) q

v

+ f(q,vq") +-J§ glq,vvq') = 0 . ‘ (2-1)
v

Here A is the inertia matrix, B and D the linear aerodynamic and structural damping
matrices respectively, C and E the linear aerodynamic and structural stiffness
matrices respectively, f is a éolumn vector of the nonlinear aerodynamic terms, and

g 1is a column vector of the nonlinear structural terms. A non-dimensional time 71 (= wt)
has been introduced where w is an, as yet, undetermined frequency, The frequency
parameter based on this frequency, the airspeed and a chosen reference length is

denoted by v ., The primes denote differentiation with respect to Tt . Vv is an
airspeed parameter, being the ratio of the airspeed to some reference speed. The
matrices A and E will both be symmetric and positive definite, but the other square
matrices (B, C and D) have no special properties. When desired we will divide them into

symmetric and skew~symmetric parts denoted respectively by the subscripts s and a.

We wish to find a relationship between the amplitude of steady state oscillations
and the speed parameter v, and also to determine whether the steady state oscillations
are stable, Of course, one may wish to vary another parameter rather than v but the
procedure should be basically similar to that which we will describe. It is not to be
expected that steady state oscillations will be possible at all values of v . The
method to be described is an application of that proposed by Roorda and Nemat—NasserI.
The rather simpler approach suggested by Taylor, Bogner and Stanleyz, which is a
generalisation to a multi-degree of freedom system of the text book energy-balance method

(see eg Ref 3, p 100), will appear as a by-product.

Let us assume the equation (2-1) has a periodic solution and let the parameter w

which we have introduced, but not specified, be the frequency of this motion. We will,
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as an approximation to the solution, take
q = op(x,T) (2-2)
where o is an amplitude parameter, and x is a column vector of parameters x; (i=1+m)

which are to be determined so that (2-2) is close to the true solution. p will thus be

periodic of period 27 and in particular
p(x,0) = p(x,2m . (2-3) i
The existence of a steady state solution implies that no energy is accumulated or

dissipated over a complete cycle, This means, writing the left-hand side of (2-1) as

v(q,9"',q") , that our assumed solution must satisfy

*p'(x.T)§Ty(ap,ap',ap")dT = 0 . (2-4)

QR
o3

The matrices A , E and Cs since they are symmetric, and the matrices Ba and Da 2
since they are skew-symmetric, will make no contribution to this integral. Equatiou (2-4)

can therefore be rewritten

7!
0

where we have assumed a 1is not zero.

X (2,V,v,X) {p'(x,‘r)}Tg(st +D_ %) ap® + Cau.p + flap,vap’) + —1-2- g(up,vvup')zdt = 0

v teeren(2-5)

To obtain further useful relationships we turn to Hamilton's principle which
states that the vintual work done by the generalised forces during any admissible virtual
displacements over an arbitrary period of time must be zero., Now the elements of y are

the generalised forces, since (2-1) is the equation of those forces to zero, and so

T2
féqu(ap,ap'.ap")dr = 0 ., (2-6)

T
l

But from (2-2) we can write 6q in terms of arbitrary variations of the elements of x

and of the frequency w . Thus, remembering that dt/dw = t = t/uw ,

986 13S
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Consequently, since &w and &x are arbitrary, and taking the time interval (rl > 12)

to be a complete cycle, we have the set of equations

2
!’p'(x,r)}Ty(ap,ap',ap")td‘r = 0 (2~8)

and

X,
i

27 T
f (—32—) y(ap,ap',ap™)dr = 0 i=1->m . (2-9)
0

We have here assumed that a/w , as well as o« , is not zero.

The above equations (2-5), (2-8) and (2-9) provide a means of determining all but
one of the unknowns a, v, v, x in terms of the remaining one ~ say determine v,v
and the X, in terms of the amplitude parameter & . The accuracy of the approximate 4
solution will depend on how adequately the assumed form for the mode of displacement
p(x,7) can represent the true solution. The method of imposed disturbances2 (or energy-
balance method (Ref 3, p 100)) uses just equation (2-5); the only unknown allowed in the
assumed displacement is the amplitude parameter a , the frequency and displacement mode
being determined from the limiting (linear) case whemn o + 0 ., An alternative simplifi~
cation would be to just use equations (2-5) and (2-8) and so determine say the frequency
and speed parameters in terms of the amplitude parameter, However, as the example of
section 2.1 shows, it is questionable whether this would yield any improvement over just
using (2-5), though it does avoid the assumption that the frequency is unchanged from

the linear case.

Before further consideration of how this suggested method could be implemented we

will in the next section consider a very simple example in order to get a feel for what

is involved, )

2.1 A simple, one degree of freedom, example

Consider the equation

vzx" + %} (x2 - v)x' + i% = 0 . (2-10)
v

This represents a one degree of freedom system in which the structural damping is the
nonlinear term evxzx'/; » and the only aerodynamic term is the damping (-evx') . By

a change of variables this can be transformed into the standard van der Pol equation :

2

48 2y g - -
dn2~~u<a Dg+e =0 (2=11)

and so we see (cf Ref 3, pp 102-106) that, for ¢ small, equation (2-10) has a limit

cycle solution %




x = 2/V cos T + 0(c) (2-12)
with
1 2
v o= o< + 0(e®) . (2-13)

Note that the solution of van der Pol's equation transformed to our variables gives
2
x = 2/ cos’—————] + 0Ce™)
v

solution means that the period in T is 27 and so we obtain (2-13),

1+ 0(e) , but our choice of w as the frequency of the periodic

Now if we neglect the nonlinear term in (2~10) we find that the only periodic

solution occurs when v =0 and vv is finite and is (a is arbitrary)

= = -
x = «a cos(vv) . (2-14)
With the proviso about w this becomes

X = acost (2-15)
with
1
v ' (2-16)
We will therefore use equation (2-15) as the trial solution, corresponding to
equation (2-2), for the methods proposed in section 2 when either just equation (2-5) or

equations (2-5) and (2-8) are used. Equation (2-5) is

2
Ev\i/ (oa®cos®t ~ v) sin’r dr = 0O (2-17)
0
which gives
2
v o= T (2-18)

In addition for this system equation (2-8) becomes

N

T

o [ %—v cos'r-—(u cosz-r-v) s1nr+Tzr gsintdtr = 0 (2-19)
0

2
1 2 ] evn| a
7(“ vz)*T('T*") =0 (2-20)

and so

el (2} v o 2-21
V] v € R (E) ( )
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which combined with (2-18) gives
v o= 20 L (2-22)

Thus, in either case the solution thus obtained has an error O(e) in x and one of
0(32) in v (cof equations (2-12) and (2-13); for, when only (2-5) used, Vv 1is assumed
to be given by the linear solution (2-16).

Making use also of (2-8) avoids the assumption that the frequency is unchanged from
the linear case, but otherwise produces no improvement and it is obvious that this must

be a consequence of the trial solution (2-~15) being too crude.

To obtain a more accurate solution we take as a trial solution equation (2-15)

with the addition of a third harmonic, Ze

X = u{cos T + x, cos 3t + x, sin 31} E ap, (2-23)
This yields, omitting second order terms in x, and x,
p' = -sin<T - 3x, sin 3t + 3x2 cos 3t (2-24)

and

y(ap,ap',ap") = a [ ;(-'—2 - vz) cos T - e_vv_ sint (az cosz‘r - v)z
v
+ xlz(-—z - 9\)2> cos 3t ~ %’- <2 sin T cos T cos 3t + 3((!2 coszt - v) sin 31)2

+x ;(—12— - 9v2) sin 3t - ev—\’ (2 sin t cos T sin 31 - 3(012 coszr - v) cos 31)‘]

evesss(2-25)

Thus we obtain from equations (2-5), (2-8) and (2-9) to the same order of accuracy

2an

j[sinzt (az cos 21’ -v) + xl{Z sinz‘r cos v cos 3t + 6 sin T sin 3¢ (02 coszt - v)}
0

+ xz{z uinzt cos t sin 3t - 6 sin t cos 3t (uz coszt - V}]dt = 0,

o..o.u(z'zs)




2%

1 2 . eV ., 2 2 2

5 -V smrcosr-Tsmt(a cos’T - V)
[}

+ X, 3(—12- - 9u2) sin Tt cos 3t + 3<L2 - vz) cos T sin 371
v \'4

- %(2 sinz't cos T cos 3t + 6 sin T sin3t (u2 coszt - v)>£

+ x23<-l—2 - 9v2) sin t sin 3t - 3(L2 - v2) cos T cos 3t

v \'4

- s_vv_ (2 sin’t cos T sin 31t - 6 sin T cos 3t (az coszr - v)> ‘]Tdr = 0.(2=27)

27

/ [(Lz - vz) cos T cos 3t - _e‘_:)_ sin T cos 3t (az 00821’ -v)

0

+ x) KLZ - 9v2) cos?3r - £ (2 ein T cos ¢ cos’3r + 3(a” cos”t - v) sin 3t cos 31);

+ X 3(——12- - 9v2) sin 371 cos 3t - & (2 sin Tt cos 1 sin 3t cos 3t
2 v

- 3(012 (:os2 T -v) cosz31‘)$ dt = 0. (2-28)

+ X, §<_2 - 9\)2) sin 3t cos 3t - % (2 sin T cos T sin 3t cos 3t

+ 3(&2 cosz'r -v) sin23r)2

+ x 4. 9\)2 sin23'r -£ sin T cos T sin23'r
2 2 v

986 23S

- 3((12 cosz'r - v) sin 3t cos 31)%] dt = 0 , (2-29)
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9
Performing thé integrations we get respectively
2 2
a 1 6a
(T- ) + x‘(--z-*'—r) 0 (2-30)
2 2 2
1/1 2 mEV [ O 2 mev (3a” - 1 ev [ 7 ,a  3v
‘E(_z"’)'T(T ")“‘n,'—z*T(—z—);*"zg"‘?(ﬁ*‘é‘*T» =0
v v
no-ooo(2-3l)
1 2 3ev a2
(-v—z-g\))xl'f—v— —Z--V x2 = 0 (2-32)
and
2 2
EVa 3ev (o 1 2 _ _
-T-—V_-(T v)xl+(?—9v)x2 = 0 . (2-33)
The solution of these equations is
)
_ _ 3ab4 2 3 _
x = Ty + 0(e7) (2-34)
. o_ai o, 0ce) (2-35)
b I ) €
2 4, 2
o & L 3a(3"-1) 2 3 _
v = 7 +-—————128 €e” + 0(e™) (2-36).
2 2 4
4 a 7o a 2 3
v :—2- -8—(3+76—8-+gz)€ +0(€) (237)
and so from (2-23)
a3e 2
X = acos T - 3% sin 3t + 0(e“) . (2-38)

Comparing with the known solution (eg McLachlana, p 45) it is easily seen* that we have

now got a solution whose error in both x and v is of 0(62) .

3 THE METHOD OF IMPOSED DISTURBANCES (ALIAS ENERGY BALANCE)

When only equation (2-5) is used we take in the trial solution (2=2)

p(X,T) = Ecos T -nsinT (3-1)

* Probably the easjest w » to do thi is to put v = 1 and then, from (2-36),
02 = 4(1 - %} 52 « I e the coefficient of 52 in the expression for v
(equation (2=37)) is (953/30e) compared with the correct value of (~1/16).




where (& + in) 1is the right hand eigenvector satisfying

- v ifB+ 2N, (e E Ve v in, = 0 (3-2)
2 v L 2
2 v2

in the critical state when v, and v, are real. Thus Vy» v, and (€ + in) are
obtained by the solution of the normal linear flutter problem. Two elements, all told,
in £ and n will be arbitrary, We also assume that the frequency in the nonlinear

case is the same as in the linear case, Ze we take

(3~3)

Other assumptions could be made but in the absence of any strong evidence the above
seems a reasonable choice. Substituting from (3-1)and (3-3) in (2-5) and integrating
the linear terms, then gives the following equation relating the amplitude o of

maintained oscillations with the speed parameter v ,

Qam \)RVQ [ET(

<)—
<|—

1 T 1 T
Bs+-v7r>s)g+n ( Bs+?Ds)n]+25 c,n

av H,vl

v

2n
= f (ET sin T + nT cos T) f[%(& cos T - n sin 1), (- £ sin T = n cos r)]
0

v

seeass(3-4)

Alternatively it could have been written as an equation connecting a and the frequency
parameter v , If the nonlinear aerodynamic and structural terms, f and g , can be
evaluated numerically with little difficulty - one might, for example, have an analytical
approximation to g deduced from resonance tests — then the solution of (3-4) should be
no problem. However, one may obtain f or g by a timewise integration procedure.
Thus one would have to assume values of o and v (or equivalently v), evaluate the
right hand side of (3-4) and then compare it with the left, and then repeat for other
(a,v) until one had got equality, In such a case a scalar parameter could be put on,
say, Ds (the symmetric part of the structural damping matrix) and the results inter-
preted as values of this parameter as a function of o« and v , The curve in the (a,v)
plane where the parameter was unity would then indicate the critical states - the

limit cycles,

+-J§ gla(§ cos T = n sin 1), avlvl(- § sin T - n cos Tﬂ dr.

v
[ad
B
el
[+
=)
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3.1 Energy balance with frequency determination

In this section we consider in more detail the use of (2-8) along with (2-5). In
the trial solution p(x,T) is again taken to be given by equations (3-1) and (3-2). The

assumption (3-3) is, however, no longer needed., Thus (2-5) gives

cnrngT(Bs + o Ds)s + vnT(Bs e Ds)n + 2§Tcant
27

= f (ST sin t + nT cos T)%fE‘l(E cos T -~ n sin 1), av~£ sin T - n cos T)]+L2 x
v
0

x gla(E cos T = n sin 1),avv(~£ sin T - n cos Ti]}dT (3~5)

while from (2-8) we have
T 2 ] T({ 2
asg (21r Ca 1T\)[BS +VDs]>n + £ <n\)l}s +
Tf 2
+n <% vl}s +
2m

= f (ET sin T + nT cos T)szl(E cos T - n sin 1), av(=~& sin T - n cos 'r)]
0

< <=
o «
S T
] +
E [(ME]
(@] O
w w
+ +
<N| <NL_
<] ™
| 1
< <
> >
[ A R T |
N’ S~
o } w
Ny

+ —% g[u(g cos T - n sin t), avv(-€ sin T = n cos 1)] f-rdr .
v

N & 1))

These two equations are particularly convenient in the case when the linear structural
damping (or indeed just the symmetrical part of the linear structural damping matrix)

is zero and there is no structural nonlinearity. It is common practice to assume no
structural damping and rely on what there is present in practice for an extra little bit
of safety margin*, In this particular case Ds and g will be zero therefore. The

first equation (3-5), which then becomes
T T ) T
aw{v(E BSE +n Bsn + 2¢ Can}

(ET sin t + nT cos T)fla(E cos t = n sin 1),av(=f sin T - n cos T)] dt (3=7)

]
Oy

can be solved, on the lines discussed in section 3, for v as a function of o .

* The addition of structural damping does not, however, necessarily make a system more
stable,

\\
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The speed parameter v is then immediatel - evaluated from equation (3-6) which in this

particular case gives

| - = '—"F_"LT— gT(va - 2mB_ - cs)s - nT(vzo_ + 2muB_ - cs)n
; v (£°EE€ = n'En)
’ 2m
i +-“2—a ] (ET sinr+nT cos t)fla(§ cos T - n sin 1), .
|
0

av(~E sin T - n cos ‘t)]’l’ dry . (3-8)

When the only nonlinearity is structural the solution is in one sense rather more

difficult, We can eliminate v between the two equations, (3-5) and (3-6), and obtain

an equation connecting o and vv . Thus writing the following four constants as

ﬂﬂ‘
i T T
‘ k] = £ BSE +n Bsn (3-9)
T T 1T :
k2 = £ BSE +n Bsn ;-E Bsn (3-10) F
1
- T —
¢, = 2g c.n (3-11) 1
T 1 T T
¢, = 2g C,n+ ﬂ{i CSE n Csn} (3-12)
and also using the notation ]
2n
1 T . T . k
gl(u,vV) = 5 f (¢ sin t + n cos T)g[a(E cos T - n sin 1), :
| a(vv)w b
avv(- £ sin T - n cos 'r)] dr
| - -\,—‘;(ETDSE + nTDsn) (3-13)
i
i 2w
] T . T . &
gz(a,\)V) = ™) ] (¢ sint + n  cos T)gEx(E cos T - n sin 1), 1
alvv)“n 0 H

avv(- £ sin T - n cos 'r)]'rdt

- 1 T, _ T _ _]_ T T _1.T ) 1 ( T T
2n(wv)? (FEE-mEM -5 (E Dgb + DN = 7 EDgn) + 5o {EaL = n An\
Ooooc-(3_l4) r(e
"
0
! we obtain the relationship 2
(c,k, = ¢,k )k g ( - } 2
c k, = ¢k { 281 (2,vV) = k g,(a,vv)p = {czgl(a,vv) - clgz(a,vv)} . (3-15)
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Having solved this equation for vv as a function of « one can then return to
equation (3-5) or (3-6) to determine Vv and hence v ., In this case (no aerodynamic

nonlinearity), with the notation introduced in equations (3-9) to (3-14), they become

vzgl(a,vv) - vk, =¢ =0 (3-16) ;

vzgz(a,vv) -Vk,=¢c, = 0 . (3-17)

4 THE FULL PROPOSAL

Our full proposal involving the use of equations (2-5), (2-8) and (2-9) permits :
the introduction of some unknown parameters x, = the elements of x = in the mode 3
p(x,7) of the trial solution (2~2). In the one degree of freedom example considered in
section (2-1) these were taken to be coefficients of harmonics higher than the funda-
mental (ef equation (2-23), For the multi-degree of freedom system there is more choice.
One could alternatively allow variation in the relative values of the elements of

p(x,7) rather than introduce higher harmonics, or perhaps use some mixture of the two

ideas.

Baldocks’6 has demonstrated how one can often find an equivalent two degree of
freedom system which will represent the behaviour of a system with many more degrees of
freedom with good accuracy at or in the vicinity of the flutter condition. Let the
modes of these two degrees of freedom be represented in terms of the original
generalised coordinates by the columnvectors ¢ and 6 , and let the flutter mode of

the linear system be
q = (z, +1i)p + (1 + i22)6 . (4-1)

Then, on the basis of this, it seems reasonable to take as a trial solution for the non-

linear system ,

q = ap(x,1) = a[{(zl + xl)¢ + e} cos T - {¢ + (z2 + xz)e} sin T] . (4=2)

Substituting this expression in equatioms (2-5) and (2-8) gives the equations given

in the previous section (3-1) - equations (3-5) and (3-6) in the general case - with
§ = (zl + xl)¢ + 0 (4=3)
n = ¢ + (zz + x2)6 . (4-4)
Of course, we only wish to retain first order terms in x; and Xy » and so writing

G = ®y o (4-5) ;

"o = (n)x2_0 (4=6)




R B i - e R N 4 i« - patas i ad _. paiieing b g

fo(u,\),T) = f a(EO cos T = n, sin T), av(- Eo sin Tt - Ny cos 'r)] (4-7)
and

go(a,vv,'r) = g a(Eo cos T = ng sin 1), avv(-EO sin t - ng cos 1')] (4-8)
equation (3-5) becomes

T

T 1 1
- “"3“50(33 *3 Ds)go * V”O(Bs *v Ds)”o * 2Egca“o * 2”1[}53(Bs * Ds)¢ - “gca?]

T
Ds)e * EOCae:H

<]

<=

T
* 2“2[}“0(33 *

2w
= (ETsinr+nTcosr)f(avr)+-—l~ (@,vv,t)}dT
0 0 0 L A v2g0 ’ »
0

| ..‘_",;}_ -'.1 -

27

T ‘T .
{‘é +x [¢ sin T fo(a,v,r) + (50 sin T + ng cos r) x
0

x {Féq)(a,v,r)dm cos 1 - F(()q')(a,v,'r)ti)a sin T}Jdr

27

*+ X, [ST cos T fo(a,v,r) - (Eg sin T + ng cos r) x
0

(q")

x {F(q) (a,v,7)0a sin ¢ + FO

0 (a,v,T)8a cos T}]df

2w
[¢T sin 1 go(a,vv,r) + (Eg sin 1t + ng cos r) x
. 0
]
' x {Géq)(a,vv,t)w cos t - G(()q )(a,vv,r)qm sin t}]dt
' 2w

/ ,:ST cos T go(a,vv,-r) - (Eg sin T + ng cos 1') X
i v ¢
0

rof oS

x ‘Géq)(a,vv,r)ea sin t + Géq.)(a,“V.T)eﬂ cos T{]d' (4=9)

' '
where (ef section 4,1) Féq), F(()q ), G(()q), G(()q ) are square matrices whose jth columns

986 138

are respectively

- \

J ‘*\“}yﬁ‘:,-_ R AR
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and

q.
J

being the jth element of q .

q=a(Eo cos 1-n, sin T)
q=a(£o cos t=n, sin 1) >

q-a(Eo cos t-n, sin T)

g=a (£, cos 1-n, sin T) y,

a Taylor expansion at this point. Similarly equation (3-6) becomes

o {Eg
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=

o
=)

j (Eg sin T.+ r\g cos 'r){fo(u,v,r) + ? go(a,vv,‘r)}‘rd'r

27
T . T . T
*+ X, Jl}a sin T fo(a,v,T) + (50 sin T + n, cos r) x
0

x {F(()Q)(a,v,t)oa cos T - Féq')(a’v,twa sin T}]‘l’dt

+ x

N
o

T T . T
[6 cos T fo(u,v,'r) - (EO sin T + n, cos -r) x

x {FS‘I)(G.\’.T)Ba sin t + F(()Q')(u,v,t)eu cos ,}],d.,

T . T . T
[¢ sin t go(u,vv,t) + (50 sin T + n, cos 1) x

(a")
0

+
<r¢|—>‘
Ot Y

x {G(()q) (a,vv,t)¢a cos T = G

(a,vv,T)éa sin 1}] tdr

(4-10)

We are assuming that the functions f and g have

=T I
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i
|
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- A o

Tl ?

27
X
2 T T . T )
+ v2 ] I:e cos 1 go(a,vv,'r) (EO sin T + n, cos 1) x
0

x {Géq) (a,vv,t)00a sin T + G(()q')(ﬂ,\’v,f)eﬂ‘ cos "}]"d" . (4=11)

Furthermore, from equation (2-9), with p(x,t) given by (4-2), we obtain the following

two equations, keeping again only first order terms in X, and x, :

T E ) D E 2 D
ot {<C+:2_—Av>50'“(8+7) “o}"xl(cs""z"“ )¢-“2 (B+V)e]

v
2n

= - ¢T f (:{fo(a,\’.‘t) + —15 go(a,vv,r)} cos T
0 . v

+ axl{F(()q)(a,v,‘rM cosz'r - F(()q’)(a,v,‘t)‘# sin T cos ‘l‘}

ax
+ —-zl{c(()q) (a,vv,1)d cosz'r - G(()q')(u,vv,tM sin T cos 'r}
v

L
- axz{F(q)(u,v,r)e sin t cos T + F(()q )(u,v,'r)e cosz'r}

0
ax ]
- -—iz-{Géq)(a,vv,r)e sin T cos T + G(()q )(a,vv,r)e coszr}] dt
v

ceeves(4-12)
and
T E 2 D D E 2
anb {(C + -v—z- Av >n0 + \)(B + "-’) §0§ + \)XI(B + ;) ¢ + xz(Cs + ? - Av >9

m

= eT [ [{fo(a,v,r) + -]—2- go(a,vv,r)} sin 1
0 v

N

+ axl{F(()q)(u,v,r)tb sin T cos T - F(()q')(u,v,rm sinzt}
ax
+ —%—{Géq)(a,vv,'r)‘b sin t cos T - Géq')(a,w,tn sinz‘t}
v
- axz{Féq)(a,v,t)e sinzr + Féq')(a,v,'r)e sin 1 cos r}
ax
- -VTZ{G(()q) (a,vv,T)8 sin21+ G(()q')(u,vv,T)e sin T cos r}]d‘t .

-ocvoc(‘l""3)
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Thus we have four equations, (4-9), (4-11), (4-12) and (4-13), which can be solved for

the four of the five unknowns a, v, v, X, and X, in terms of the other one. The ’f

equations are linear in the modal parameters X, and X, but not in the other unknowns.

The solution of these equations should not be as troublesome as it might appear.

! Consider first the case when there is no structural damping and no structural non-

linearity (D and g(q,vvq') are both zero). Then all the integrals that appear are

. independent of v and so we can assume values of o and v and obtain respectively,

from equations (4=9), (4~11), (4=12) and (4-13), equation of the form

Mor®1 * Mo2*2 * ¥o3 =0 (4=14)
b

v

[ a a a _ _
~ (“11 '7*11)“1 * (“12 "‘5712)"2 * <“13 '7*13) =0 (4=15)

v v v
| b o~ = X, o+, X, + -2 =0 (4-16)
. "1 T 2 Yoy T 22 T (M23 T 2 V23

{ Wy Xy * by =5 Yoo )%, + {1, = v
\ 3171 32 v2 32/72 33,233

The coefficients My will all be functions of a and v . For example

i 2m

_ T T _ T A T
Moz = 2a1r[vnOBse + gocae] f [6 cos T fo(a,v,r) (F’O sin T + n, cos 'r) x
0

x {Féq)(a,v,r)ea sin T - Féq')(u,v,r)ea cos T}]dt .
‘ .-...-(4-18)

The other coefficients, the Yij » are constants, An example is

(4-19)

The three equations (4-15) to (4~-17) form an eigenvalue problem which can be solved

| by the usual methods for a/v2 y X and Xy o We require a solution for which all

these quantities are real and the first one, (a/vz), is positive. There always will be

at least one real solution. The values of X, and X, from suitable solutions of

(4-15) to (4-17), can then be substituted in equation (4-14) to see how closely it is ;

satisfied, By repeating the procedure for other assumed values of o and v one should

oen .

then be able to find the conditions under which all four equations are satisfied; thus

: i obtaining v, X|s Xy and v as functions of o for the critical (limit cycle) flutter

condition.

When the only nonlinearity is structural it is convenient to use a notation which
is an elaboration of that used in that section 3.] (see Table ] for full details).
Equations (4-9), (4~11), (4-12) and (4-13) then become
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- a factor amr or aﬂz has been deleted as convenient

- regpectively

2
v {glo(u,vv) + xlgl](a,vv) + nglz(a,vv)} - v(klo + k”xl + klzxz)

- (clo Sext clzxz) = 0 (4-20)
2
v {320(“""’) ¥ X8y (@) + x2“322("""")} = Vlkyg * kg %y ¥ Kypxy)
. - (¢, -cCc, X, + ¢ ) = 0 (4=21)

20 ~ 1™y 22%2

2
v {830(“""’) * xlgan(“’”v)'x2g3z(°’““)} “V(kgg kg X)) Hlegptegx)) = 0 (4-22)

2
v {g40(a,vv) + xlgm(a,\w) -ngl‘z(a,vv)} -v(k40+k“xl)- (c40+c“2x2) = 0 ,(4=23)

The procedure that can be followed will then be similar to that just suggested in the case
of aerodynamic (and not structural) nonlinearity. Values of o and vv assumed; the
eigenvalue value problem posed by three* of the above four equations is solved for Vv° ,

X, and x the solution is suybstituted in the remaining equation; and the process

2 H
is repeated with other assumed values of o and vv until the locus of critical condi~

. tion is found.

- 4.1 The matrices Féq) etc

j No difficulty should be encountered in evaluating the matrices whose elements are

‘ defined by equations (4=-10) if analytical expressions are known for the column vectors
f(q,vq') and g(q,vvq'). There may, however, be cases when all that is available are
numerical values of the vectors at instances during a specified motion. For example
this most likely will be the case for f as given by nonlinear transonic flow calcula~
tions, At first sight one may imagine in gsuch a case that we are left with an almost

overwhelming problem,

However, let us first note that what is required in equations (4-9) and (4~11) to

L
(4~13) is not the two square matrices F(q) and F(q ) in isolation but the two
0 0

e ————— - ..

column vectors
(9) - gla") 1 {af -
<%0 ¢ cogs T - F ¢ sin T 5 9’1 (4=~24)
X =a
; q=op,
%
i and
(@, . (q') I Y A1 4
(%O 8 sin T + Fy" "0 cos T = \5z, (4~25)
q=op,
* Stability considerations (of section 4.1) suggest that it may be most instructive to
take the last three = (4-21) to (4-23). A solution which gives v¢ real and positive

(and hence x and x, real) is required.




where po(r) = p(0,T1) . (4~26)

Thus by evaluating £(q,vq') for q = apy » and for one or two adjacent q caused by

* small variatiomsin z, and z, , one should be able to evaluate the required vectors,

4,2 Stability of limit cycles

When the function x(a,v,v,x) (equation (2-5)) is positive*, it means that energy

has to be supplied to the system to maintain the assumed motion, Our proposed solution

procedure determines a curve, in say the (a,v) plane, where X = 0 ; and also provides

values of x at other points in this plane. If x is negative above this critical

! curve, Z¢ when & is increased by &c , or positive below the curve, then we can
{ ‘ certainly say that the limit cycles corresponding to points on the curve are unstable
: for they are unstable with respect to perturbations in a ., We cannot, however, say
:;* with absolute certainty that the limit cycles are stable if the contrary is true,

that is if x 1is positive above and negative below the critical curve. This is

because the motion may be unstable with respect to other perturbations (cf Ref 1).

However, in practice, one would expect the signs of ¥ , adjacent to the critical curve

x = 0 , to be a good enough guide to the stability or otherwise of the limit cycles.

! If there is a stable limit cycle then it means that we can have what is usually known

as limited amplitude flutter; while if there is just an unstable limit cycle then

catastrophic (diverging to infinity) flutter will be possible when the system undergoes

a big enough disturbance.

5 CONCLUDING REMARKS

The question as to whether procedures for determining limit cycles, such as

those described in this Memorandum, are more attractive than other approaches will depend

largely on the number of parameters necessary in the description of the limit cycle,

If, as in the detailed development of section 4, one can get away with two parameters

‘ . X and Xy s in addition to the amplitude and frequency parameters (a and v) (cf equation

(4~2)), then it may well prove the more economical method, Baldock's ways’6 of con-

densing a linear flutter system to an equivalent binary certainly provides a promising

guide to the choice of parameters in such a case.

* Or, equivalently, the left-hand side is greater than the right-hand side in
equations (3-4) or (3-5) or (4-9), or the left-hand side of (4-20) is negative.
The energy supplied is also zero in the trivial case a = 0 (cf equation (2-4)),
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NOTATION USED IN EQUATIONS (4=20) TO (4-23)
_ T - T - T
o = 28Ca0 1 npCe s cj2 = 2808
:
| - ofT lT_T} e onTe . _1.T w o Tr gl T
3 : 20 = 25" * E{gocsgo "oCs"of>  C21 = Mot T ¥ SoC¢ s ©3; = 268,80~ noC8
] T . T
4 €3p = ¢ C&y s €31 o Ce
A d
9 = ol = ol
- €40 0 Cno ’ c62 6 cse
B i
|
.« —
|
| _ T T = 0T - o.T
i k10 = SoBsko * MoBsno ki 25080 » kjpg = 2ngB8
]
o T T _1T _ 5T 1T e oTp o _1,T
k20 = “0Bs%0 * MoBsMo T 7 foBsMo  Kai T ZpBg® * 7 noBs? o kyp = 2npBg8 = 7 B8 »
T T
i kyg = ¢ Bny kyy = ¢°B8
1
1 T T
. k40 =0 BEO , k“ 8 B¢
]
)
2n
' B 1 T . T _ 1 |,T T
3 » glo(a,vv) = 5 / (EO sin 1 + n, cos 'r) go(a,vv,'r)d'r ver (EODSEO + nODsno)
am{vv) 0
27
g, (a,vv) = ! ¢T sin T g,(a,vv,T) + ET sin T + n'r cos r) *
11 2 0 0 0
am(vv) 0
' . 2 T
x (()q)(a,vv,'r)m cost - G(()cl )(a,vv,'r)¢u sin r}]dr s EODS¢
2n
glz(a,vv) = ! eT cos T go(a,vv,t) - (Eg sin Tt + n}; cos 1') x
ar(vv)
[ 4
, 2
‘ x{céq)(a.vv.r)ea sint + Géq )(a.W.r)ea cos r}]dr aliven ngDse 5
O
27 2
; ] T ., T ) T, T,
= . g8 n(a,vv) = —-—/ (g sin T + n_ cos -r)g (a,vv,1)tdT - —7 (E EE. = n En)
i ,j 20 c“"2(‘”)2 { 0 0 0 21 (vv) 0°70 0°'0
: ’ 1 T T, 1 T | T T 3
P w (Eonseo * NP0 < 7 EoDs“o)" b (Eo“o "o“"o) ;
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Table 1 (concluded)

(a,vv) = —'———2-
ar” (vv)

T . T . T )
g5 [¢ sin T go(a,vv,t) + (EO sin T + n, cos T x

{ (a) (a,vv,T)¢a cos t - G(q )(u vv,T)é0 sin t}]rd‘r
1 T T 1 T
T e Z o T = (2501’5¢ YT r’oDsq’) * 7 Eght
2w
gzz(a,vv) = —-2—]—-5 /[GT cos T go(a,\)v,r) - (Eg sin T + ng cos 'r) x
an” (vv) )
L
X{Géq) (a,vv,T)0a sin T + G(()q )(u,vv,t)ea cos T}]‘td't ]
1 T 1 T 1 T
+ “(vv)z noEe - —{2n0D [*] - EODSB} > ner ‘
: 1
2w k
g30(a,\)v) = S ¢T go(a,vv,r) cos T dt + ¢ EEO - -;;l;- ¢TDn0 - ¢TAEO 1
am(vv) (VV)
0 a
1
E
g3](a,vv) = {[ <q)(a vv,T) c0521 - G(q )(a vv,T) sin T cos T}d ¢
n(\)v)
¢ E¢ - ¢ A¢
(vV)
2n ’ 1
L b
gon(a,vy) = I ¢T {G(q) (a,vv,T) 8in 7 cos T + G(q )(a,vv,'r) coszr}dr B+L ¢TD9
32 w(vv)z 0 0 v
0
2m
T . T 1 T T
g40(a,vv) = M(VV) / g9 (a,vv,t) 8in T dT - (\N) ~—— 6 Eno -5 ] DEO + 0 Ano
0 ]
27 3
\ ]
g“(a,\:v) = ] (q)(a,vv,‘r) sin T cos T - Géq )(a,vv,'r) sinzt}d‘r ¢--\-)!‘7 OTD¢
1r(vv)
27
31.2(“’“") = 2 T / (q)(a WV, T) smzr + G(()q )(a vv,T) 8in T cos r}dr 6
m(vv) o
+ — 6TEo - 0Ta0 .

2

(vv)
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Féq)(a,v,r)

Féq')(a,v,r)

6$¥ (a,vv,0)
Géq')(a,vv,r)

¢1» €

1’
45
£(q,vq")
fo(a,v,r)
g(q,vvq')
go(a,vv,r)
gi(a,vv)

gij(a,vv)

1> 2
k..
ij
pix,1)
po(T) = p(0,T1)
q(T)
qi(r)

xl’ ngoon
y(q,q9',9")
210 2y

Yij

LIST OF SYMBOLS

inertia matrix

linear aerodynamic damping matrix
linear aerodynamic stiffness matrix
linear structural damping matrix

linear structural stiffness matrix

square matrix whose jth colummn is (3f/3q.)
i’ q=ap,

square matrix whose jth column is (3£/3q!)
q 3 9} geap,

(3g/3q.)

square matrix whose jth column is
i"q=ap,

square matrix whose jth column is (3g/3ql) _
J Q'apo

see equations (3-11) and (3~12)

constant coefficients in equations (4~20) to (4-23) (no aerodynamic
nonlinearity, c¢f Table 1)

column vector of nonlinear aerodynamic terms
see equation (4-7)

column vector of nonlinear structural terms
see equation (4-8)

see equations (3~13) and (3-14)

coefficients in equations (4-20) to (4-23) (no aerodynamic nonlinearity,
ef Table 1)

see equations (3-9) and (3-10)

constant coefficients in equations (4-20) to (4-23) (no aerodynamic
nonlinearity, c¢f Table 1)

mode of trial solution for q(r1)

column vector of generalised coordinates

ith element of q(t)

time

ratio of airspeed to a reference speed

flutter speed parameter of linear problem (cf equation (3-2))
see equation (2-10)
parameters in p(x,7) (see also equations (4=2) to (4=4))
left hand side of equation (2-1)

coefficients in flutter mode of linear system (equation (4~-1))

amplitude parameter

constant coefficients in equations (4~14) to (4=17) (no structural
damping or nonlinearity)

small parameter in equation (2-10)

column vector component of p(x,T) (see equations (3~1) or (4=~4))
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LIST OF SYMBOLS (concluded)

column vector in flutter mode of linear system (equation (4~1))

coefficient in van der Pol equation

coefficient in equations (4-14) to (4~17) (no structural damping or
nonlinearity)

frequency parameter
flutter frequency parameter of linear problem (ef equation (3-2)

column vector component of p(x,T) (see equation (3-1) or (4-3))

column vector in flutter mode of linear system (equation (4-1))
x(a,v,v,x) see equation (2=5)

w circular frequency of limit cycle

Dressings

indicates differentiation with respect to 1

a and s subscripts indicate skew~symmetric and symmetric part of a square
matrix respectively
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